Non-Precious Metal Graphene-Based Catalysts for Hydrogen Evolution Reaction
نویسندگان
چکیده
منابع مشابه
Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution
A robust and efficient non-precious metal catalyst for hydrogen evolution reaction is one of the key components for carbon dioxide-free hydrogen production. Here we report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the-art carbon-supported platinum catalyst. A...
متن کاملConducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction.
We report chemically exfoliated MoS2 nanosheets with a very high concentration of metallic 1T phase using a solvent free intercalation method. After removing the excess of negative charges from the surface of the nanosheets, highly conducting 1T phase MoS2 nanosheets exhibit excellent catalytic activity toward the evolution of hydrogen with a notably low Tafel slope of 40 mV/dec. By partially o...
متن کاملGraphene-Ni-α-MnO2 and -Cu-α-MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction.
Graphene-like carbon-Ni-α-MnO(2) and -Cu-α-MnO(2) blends can serve as effective catalysts for the oxygen reduction reaction with activities comparable to Pt/C.
متن کاملInvestigations into the Direct Synthesis of Hydrogen Peroxide and CO Oxidation Using Precious Metal Catalysts
متن کامل
Non-Precious Metal Catalysts for Oxygen Reduction in PEM Fuel Cells
Metal-free carbon-based catalysts for oxygen reduction is synthesized with high activity selectivity and durability. The catalysts were synthesized by introducing oxygen and nitrogen groups from various oxygen and nitrogen precursors. The nature of nitrogen surface groups and the effect of pyrolysis temperature on the activity of the catalyst have been evaluated. XPS indicates that higher conce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochem
سال: 2020
ISSN: 2673-3293
DOI: 10.3390/electrochem1020008